• PO Box 990, Harwich, MA 02645, USA

A Primer on pH

The term pH refers to the concentration of hydrogen ions (also called protons or H+) in a solution. Technically speaking, pH reflects the H+ activity, or amount of H+ available for reactions; but for many ordinary solutions, this value is very close to the total H+ concentration. For water solutions, the scale ranges from 0 to 14, with pure water right in the middle at 7. The more acid a solution is, the lower the pH reading, and alkaline solutions come in at the high end of the scale.

This might seem backwards, since acid solutions have the highest H+ content, but this shorthand notation keeps the math simple. For example, the H+ concentration in pure water is 1.0 x 10–7 moles/liter (10–7 molar, or M), so the pH is 7. If you put enough vinegar in the water to increase the H+ concentration to 10 times the original amount, or 10–6 M, the pH is 6. Likewise, you can add enough sodium hydroxide to pure water to neutralize 90% of the available H+ (making it 10–8 M in H+), and the pH value rises to 8. Smaller changes in the H+ concentration are expressed as decimal values: 6.3 or 7.5, for example.

Paper test strips are good for measuring approximate pH values, but when requiring something more exact—an instrument called a pH meter that can pick up even small changes in acidity. A pH meter is a boxy-looking instrument attached to a glass or plastic tube called a probe. (A bench top model is shown above. Handheld pH meters have a probe directly attached to the instrument body.) The probe has a glass bulb on one end and an electrical wire on the other. The wire sends data to the instrument when the glass bulb is dipped into a sample solution.

The pH meter measures H+ concentration by sensing differences in the electrical charges inside and outside of the probe. The glass bulb is made from silica (SiO2) that contains added metal ions. Most of the oxygen atoms in the glass are surrounded by silicon and metal atoms. However, the oxygen atoms on the inside and outside surfaces of the bulb are not completely surrounded, and they can “grab” positively charged ions from the solution.

When the bulb is dipped into an acid solution, H+ ions bond with the outside surface of the glass bulb, forming electrically neutral Si–OH groups. The Si–O– groups on the inside surface are in contact with a reference solution. The difference in electrical charge between the two surfaces creates an electrical potential, or voltage, and this causes an electrical current to flow through the wire at the other end of the probe.

Alkaline solutions have low concentrations of H+ ions and higher concentrations of negative ions such as OH. The excess negative charges are balanced with positively charged metal ions such as Na+, and these positive ions hover close to the surface of the bulb rather than binding to the Si–O– groups. This sets up a different sort of charge separation, and the resulting electrical signal registers a high pH.

Specialized probes can measure concentrations of ionic species other than H+, including fluoride, chloride, ammonia, sodium, potassium, calcium, sulphide, and nitrate. In general, these probes are referred to as “specific-ion electrodes”.

This article first appeared on July 12, 2004.


Rebuild & Protect WearGuard epoxy systems are used to restore and protect metals in a wide variety of high-service industrial applications. WearGuard Systems from ARCOR: 100% Solids Novolac Epoxies Superior Resistance to a Wide Array of Acids & Caustics High

Read More

Underground Transmission

Underground Transmission DOWNLOAD PDF The City of Los Angles has several thousand 138 Kv cable joints made by G&W Corp.  Before the 1950’s they used bake-o-lite sheath insulators. Subsequently the joints were made with porcelain or glass insulators. Over time

Read More

ARCOR 2213 Epoxy Stick

ARCOR 2213 Epoxy Stick Updated May 2020 GENERIC TYPE: AMINE CURED 100% SOLIDS EPOXY REBUILDING COMPOUND DESCRIPTION AND RECOMMENDED USES: 2213 Stick is a solvent free two-component, moisture insensitive epoxy adhesive designed as an emergency repair or bonding material for metals, glass,

Read More

ARCOR 121 HT Comparison

ARCOR 121HT Comparison Belzona 1391 & 5891 ARCOR® 121HT meets or exceeds all the ‘in service’ design specifications of Belzona 1391HT & 5891HT specifically temperature limits, chemical resistance and wear resistance.ARCOR® 121HT is a 3.6 functional Novolac Epoxy coating with

Read More

ARCOR EE 121 HT Prime

ARCOR EE-121 HT Prime (High Temperature) Updated May 2020 GENERIC TYPE: AMINE CURED 100% SOLIDS 3.6 NOVOLAC, TOP COAT DESCRIPTION AND RECOMMENDED USES: ARCOR™ EE-121 HT Prime is a modified ARCOR™ EE-121 HT designed to increase temperature performance by up to 100ºF

Read More